Abstract:In this paper, by analyzing the characteristics of infrared moving targets, a Symmetric Frame Differencing Target Detection algorithm based on local clustering segmentation is proposed. In consideration of the high real-time performance and accuracy of traditional symmetric differencing, this novel algorithm uses local grayscale clustering to accomplish target detection after carrying out symmetric frame differencing to locate the regions of change. In addition, the mean shift tracking algorithm is also improved to solve the problem of missed targets caused by error convergence. As a result, a kernel-based mean shift target tracking algorithm based on detection updates is also proposed. This tracking algorithm makes use of the interaction between detection and tracking to correct the tracking errors in real time and to realize robust target tracking in complex scenes. In addition, the validity, robustness and stability of the proposed algorithms are all verified by experiments on mid-infrared aerial sequences with vehicles as targets.