The aim of this study was to investigate the genetic variability of sequences present in the chromosome ends of Trypanosoma rangeli strains defined by the presence (+) or absence (-) of KP1 minicircles, and to compare the mean terminal restriction fragment (TRF) lengths to those of Trypanosoma cruzi populations representative of groups TcI, TcII, TcIV, and TcVI. Southern blots containing RsaI-digested genomic DNA of T. rangeli KP1(+) strains, T. rangeli KP1(-) strains, and T. cruzi strains were probed with the previously described subtelomeric sequences (170 bp) of T. rangeli and with telomeric hexamer repeats. Mean TRF length analysis showed that the chromosome ends of T. rangeli are distinctly organized, with TRFs ranging from 1.3 to 9 kb for KP1(+) strains and from 0.3 to 5.0 kb for KP1(-) strains. In T. cruzi, TRF length ranged from 0.2 to 9 kb and no association with the genotype of the parasite could be established. Sequence analysis of the 170-bp amplicons revealed the occurrence of sequence polymorphisms in the subtelomeric region between and within KP1(+) and KP1(-) strains. The GTT triplet was detected in all KP1(+) strains, except for strain Cas4, but not in any of the KP1(-) strains. The dendrogram constructed by alignment of all T. rangeli strains showed the division into two main groups, mainly related to the presence or absence of the KP1 minicircle. In conclusion, the present results extend the genotype differences demonstrated by kDNA and karyotype analysis in T. rangeli to the chromosome ends of the parasite.