2008
DOI: 10.1002/ange.200802938
|View full text |Cite
|
Sign up to set email alerts
|

Katalytische Carbonyladdition durch Transferhydrierung: weg von vorab gebildeten Organometallreagentien

Abstract: Die klassischen Verfahren der Carbonylallylierung, ‐propargylierung und ‐vinylierung setzen auf die Verwendung von vorab gebildeten Allylmetall‐, Allenylmetall‐ bzw. Vinylmetallreagentien, was die Bildung stöchiometrischer Mengen an metallischen Nebenprodukten bedingt. Durch transferhydrierende C‐C‐Kupplung gelingt es jedoch, Carbonyladditionen auch ohne stöchiometrische Organometallreagentien oder metallische Reduktionsmittel auszuführen, wobei von einem Aldehyd oder Alkohol ausgegangen wird. In diesem Kurzau… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
9
0
2

Year Published

2009
2009
2017
2017

Publication Types

Select...
10

Relationship

0
10

Authors

Journals

citations
Cited by 102 publications
(11 citation statements)
references
References 193 publications
0
9
0
2
Order By: Relevance
“…[27] Likewise, ruthenium-catalyzed intermolecular transfer hydrogenative coupling reactions are redox-neutral skeleton forming reactions (Scheme 8 b). [28,29] The Tishchenko reaction [30a] (Scheme 9 a) as well as the Evans-Tishchenko reaction [30b] (Scheme 9 b) are also examples of redox-neutral reactions for they couple either two aldehydes or an aldehyde with a b-hydroxy ketone by an internal hydride transfer.…”
Section: Tactics To Achieve Redox Economymentioning
confidence: 99%
“…[27] Likewise, ruthenium-catalyzed intermolecular transfer hydrogenative coupling reactions are redox-neutral skeleton forming reactions (Scheme 8 b). [28,29] The Tishchenko reaction [30a] (Scheme 9 a) as well as the Evans-Tishchenko reaction [30b] (Scheme 9 b) are also examples of redox-neutral reactions for they couple either two aldehydes or an aldehyde with a b-hydroxy ketone by an internal hydride transfer.…”
Section: Tactics To Achieve Redox Economymentioning
confidence: 99%
“…Taking advantage of the native reducing ability of alcohols, we have developed a family of redox-triggered carbonyl additions wherein hydrogen transfer from alcohols to p-unsaturated reactants produces electrophile-nucleophile pairs en route to products of formal alcohol CÀH functionalization via carbonyl addition. [5] Among the transformations emanating from this new pattern of reactivity, the enantioselective iridium-catalyzed alcohol C-allylation, which employs allyl acetate as the allyl donor, has proven particularly useful, availing exceptionally concise routes to diverse polyketide natural products. [6,7] Remarkably, the cyclometalated p-allyliridium C,Obenzoate catalysts used in such alcohol C-allylations display a pronounced kinetic preference for primary alcohol dehydrogenation, [8,9] enabling site-selective allylation of unprotected diols and triols with high levels of catalyst-directed diastereoselectivity.…”
Section: Introductionmentioning
confidence: 99%
“…[1][2][3] Die hinreichende chemische Stabilität dieser sekundären Zinnverbindungen wird für gewöhnlich durch einen Sauerstoffsubstituenten am a- [4] oder g-Kohlenstoffatom [5] gewährleistet, während allylische Systeme ohne jedwede Substitution durch ein Heteroatom wegen ihrer ausgeprägten Tendenz zur 1,3-Zinnverschiebung oder gar Zersetzung als empfindlich gelten. [1] Das Fehlen milder Verfahren zur Synthese dieser schwer zu fassenden nur-Kohlenstoff-substituierten Allylstannane mag die Fortentwicklung ihrer Chemie bislang vereitelt haben.…”
Section: Eric S Schmidtmann Und Martin Oestreich*unclassified