Recently, several passive and active attack methods have been proposed against the Kirchhoff–Law–Johnson–Noise (KLJN) secure key exchange scheme by utilizing direct (DC) loop currents. The DC current attacks are relatively easy, but their practical importance is low. On the other hand, parasitic alternating (AC) currents are virtually omnipresent in wire-based systems. Such situations exist due to AC ground loops and electromagnetic interference (EMI). However, utilizing AC currents for attacks is a harder problem. Here, we introduce and demonstrate AC current attacks in various frequency ranges. The attacks exploit a parasitic/periodic AC voltage-source at either Alice’s or Bob’s end. In the low-frequency case, the procedure is the generalized form of the former DC ground-loop-based attack. In the high-frequency case, the power density spectrum of the wire voltage is utilized. The attack is demonstrated in both the low and the high-frequency situations. Defense protocols against the attack are also discussed.