How to respond to starvation determines fitness. One prominent behavioral response is increased locomotor activities upon starvation, also known as Starvation-Induced Hyperactivity (SIH). SIH is paradoxical as it promotes food seeking but also increases energy expenditure. Either too much or too little SIH would impair fitness. Despite its importance, the genetic contributions to SIH as a behavioral trait remains unexplored. Here, we examined SIH in the Drosophila melanogaster Genetic Reference Panel (DGRP) and performed genome-wide association studies. We identified 27 significant loci, corresponding to 18 genes, significantly associated with SIH in adult Drosophila. Gene enrichment analyses indicated that genes encoding ion channels and mRNA binding proteins (RBPs) were most enriched in SIH. We are especially interested in RBPs because they provide a potential mechanism to quickly change protein expression in response to environmental challenges. Using RNA interference, we validated the role of Syp in regulating SIH. Syp encodes Syncrip, an RBP. While ubiquitous knockdown of Syp led to lethality during development, adult flies with neuron specific Syp knockdown were viable and exhibited decreased SIH. Using the Temporal and Regional Gene Expression Targeting (TARGET) system, we further confirmed the role of Syp in adult neurons in regulating SIH. Lastly, RNA-seq analyses revealed that Syp was alternatively spliced under starvation while its expression level was unchanged. Together, this study not only demonstrates genetic contributions to SIH as an important behavioral trait but also highlights the significance of RBPs and post-transcriptional processes in regulating SIH.