The electrochemical reduction of dioxygen has been studied in acetonitrile at glassy-carbon electrodes. The initial step is the reversible one-electron reduction to form superoxide. In the presence of hydrogen-bond donors (water, methanol, 2-propanol), the superoxide forms a complex with the donor resulting in a positive shift in the potential that can be analyzed to obtain formation constants for these complexes. Stronger acids result in protonation of the superoxide followed by reduction to produce HO2-. In the absence of hydrogen-bond donors, the reduction of superoxide occurs at very negative potentials, and this second reduction peak is very much drawn-out along the potential axis, indicating a small value of the transfer coefficient, alpha. The addition of hydrogen-bond donors, HA, brings about a positive shift in this peak, without a noticeable change in shape. The reaction occurring at the second peak is a concerted proton and electron transfer (CPET) in which the electron is transferred to superoxide and a proton is transferred from HA to the superoxide, forming HO2- and A- in a concerted process. An estimation of the standard potential for this reaction shows that the second reduction always occurs at a high driving force, which explains the small value of alpha that is observed. Consistent with a CPET, a kinetic isotope effect, HA versus DA, was detected for the three hydrogen-bond donors. The increasing positive shift of the second peak with increasing water concentration has been interpreted as being a consequence of the change in the formal potential, as water is both a reactant in the process and a participant through the hydrogen-bond stabilization of the anions.