2010
DOI: 10.1016/j.msea.2010.01.081
|View full text |Cite
|
Sign up to set email alerts
|

Kinetics modeling of austenite decomposition for an end-quenched 1045 steel

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
18
0
3

Year Published

2013
2013
2022
2022

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 46 publications
(21 citation statements)
references
References 30 publications
0
18
0
3
Order By: Relevance
“…Consequently a new approach was introduced using the constitutive equation of Lee et al (2010) for modelling diffusionless kinetics of phase transformation. Since the formation of martensite is a time-independent process, Eq.…”
Section: Modelling Diffusionless Kinetics Of Phase Transformationmentioning
confidence: 99%
See 2 more Smart Citations
“…Consequently a new approach was introduced using the constitutive equation of Lee et al (2010) for modelling diffusionless kinetics of phase transformation. Since the formation of martensite is a time-independent process, Eq.…”
Section: Modelling Diffusionless Kinetics Of Phase Transformationmentioning
confidence: 99%
“…Here, m is the volume fraction of martensite, M s the martensite start temperature and T the current temperature. The parameters ˛, n, ϕ m and m are material model parameters that influence the incubation time and the rate of formation d m /dT in dependency to the austenite grain size (Lee et al, 2010). The austenite grain size corresponds to G ASTM = 11 and the martensite start temperature is 410 • C.…”
Section: Modelling Diffusionless Kinetics Of Phase Transformationmentioning
confidence: 99%
See 1 more Smart Citation
“…where latent heats DH k of 89.4, 77.5, 66.5, and 81.5 kJ/kg for k = 1, 2, 3, and 4, respectively, were selected from the literature (Lee et al, 2010). The other thermal properties such as the density q, specific heat c p , and conductivity k were also modeled as functions of temperature or both temperature and phase fractions, namely,…”
Section: Implementing Materials Models Via User-defined Subroutinesmentioning
confidence: 99%
“…A fonte de calor tridimensional e transiente (representadas pelas Equações 2 e 3) são incluídas no termo fonte da Equação 1 e pode-se, portanto, resolver o problema acoplado considerando as não linearidades devidas a propriedades termofísicas (dependentes da temperatura e composição) e à fonte de calor móvel do modelo duplo-elipsóide descrito pelas Equações 2 e 3. A convecção e radiação nas superfícies da chapa, classicamente descritos por qc=h(T-T0) e qr=εσ(T 4 -T0 4 ), respectivamente [11]. Onde qc e qr são respectivamente o calor gerado à frente e atrás da tocha, T a temperatura final e T0 a inicial, σ é a constante de stefan boltzmann (σ= 5,67×10 .K).…”
Section: Estudo Numérico E Experimental Da Evolução Microestrutural Eunclassified