Abstract— SnO2 is considered to be a promising alternative material for indium tin oxide (ITO), which is used for thin‐film transparent electrodes in flat‐panel displays (FPDs) and is facing a serious indium depletion problem. However, annealing processes in the manufacture of plasma‐display panels (PDPs), which are major FPDs, cause high resistivity in SnO2 films. To obtain lower resistivity after the annealing processes, the relationship between deposition conditions and resistivity and the influences of annealing on resistivity, both theoretically and experimentally, were investigated. As a solution, a method involving the formation of a coating of SiO2 on SnO2 is proposed, and a SnO2 resistivity as low as 6.60 × 10−5 Ω‐m was obtained after annealing.