Human leukocyte antigen (HLA) class I molecules bind peptides derived from the intracellular degradation of endogenous proteins and present them to cytotoxic T lymphocytes, allowing the immune system to detect transformed or virally infected cells. It is known that HLA class I-associated peptides may harbor posttranslational modifications. In particular, phosphorylated ligands have raised much interest as potential targets for cancer immunotherapy. By combining affinity purification with highresolution mass spectrometry, we identified more than 2000 unique ligands bound to HLA-B40. Sequence analysis revealed two major anchor motifs: aspartic or glutamic acid at peptide position 2 (P2) and methionine, phenylalanine, or aliphatic residues at the C terminus. The use of immobilized metal ion and TiO 2 affinity chromatography allowed the characterization of 85 phosphorylated ligands. We further confirmed every sequence belonging to this subset by comparing its experimental MS2 spectrum with that obtained upon fragmentation of the corresponding synthetic peptide. Remarkably, three phospholigands lacked a canonical anchor residue at P2, containing phosphoserine instead. Binding assays showed that these peptides bound to HLA-B40 with high affinity. Together, our data demonstrate that the peptidome of a given HLA allotype can be broadened by the presentation of peptides with posttranslational modifications at major anchor positions. We suggest that ligands with phosphorylated residues at P2 might be optimal targets for T-cell-based cancer immunotherapy. Molecular & Cellular Proteomics 13: 10.1074/mcp.M113.034314, 462-474, 2014.
Major histocompatibility complex (MHC)1 class I molecules are cell surface glycoproteins that are expressed on almost every nucleated cell in vertebrates. They result from the noncovalent interaction of a polymorphic heavy chain, a constant light chain (-2-microglobulin (2m)), and a peptide ligand (1). The extracellular region of the heavy chain encompasses three domains, ␣ 1 , ␣ 2 , and ␣ 3 , with ␣ 1 and ␣ 2 forming a groove that accommodates a peptide ligand of, typically, 8 to 11 amino acid residues. The binding of the ligand to the groove is governed by the interaction of the side chains of certain peptide residues, called anchor positions, with several pockets of the heavy chain named A to F (1, 2). The size and chemical nature of these pockets impose restrictions on the peptide repertoire that can be associated with a particular class I antigen. It is reckoned that the ligandome of a given class I allotype may comprise up to 10,000 different peptides (3), although recent reports suggest that this number may be underestimated (4).Peptides displayed by MHC class I molecules derive from the intracellular degradation of endogenous proteins in the nucleus and cytosol and reach the lumen of the endoplasmic reticulum by means of the transporter associated with antigen processing. Inside the endoplasmic reticulum, peptides bind to the heavy chain and 2m in a multistep process involving several c...