This work presents an architecture for the development of on-line prediction models. The architecture defines unified modular environment based on three concepts from machine learning, these are: (i) ensemble methods, (ii) local learning, and (iii) meta learning. The three concepts are organised in a three layer hierarchy within the architecture. For the actual prediction making any data-driven predictive method such as artificial neural network, support vector machines, etc. can be implemented and plugged in. In addition to the predictive methods, data pre-processing methods can also be implemented as plug-ins. Models developed according to the architecture can be trained and operated in different modes. With regard to the training, the architecture supports the building of initial models based on a batch of training data, but if this data is not available the models can also be trained in incremental mode. In a scenario where correct target values are (occasionally) available during the run-time, the architecture supports life-long learning by providing several adaptation mechanisms across the three hierarchical levels. In order to demonstrate its practicality, we show how the issues of current soft sensor development and maintenance can be effectively dealt with by using the architecture as a construction plan for the development of adaptive soft sensing algorithms.