Pattern sampling has been proposed as a potential solution to the infamous
pattern explosion. Instead of enumerating all patterns that satisfy the
constraints, individual patterns are sampled proportional to a given quality
measure. Several sampling algorithms have been proposed, but each of them has
its limitations when it comes to 1) flexibility in terms of quality measures
and constraints that can be used, and/or 2) guarantees with respect to sampling
accuracy. We therefore present Flexics, the first flexible pattern sampler that
supports a broad class of quality measures and constraints, while providing
strong guarantees regarding sampling accuracy. To achieve this, we leverage the
perspective on pattern mining as a constraint satisfaction problem and build
upon the latest advances in sampling solutions in SAT as well as existing
pattern mining algorithms. Furthermore, the proposed algorithm is applicable to
a variety of pattern languages, which allows us to introduce and tackle the
novel task of sampling sets of patterns. We introduce and empirically evaluate
two variants of Flexics: 1) a generic variant that addresses the well-known
itemset sampling task and the novel pattern set sampling task as well as a wide
range of expressive constraints within these tasks, and 2) a specialized
variant that exploits existing frequent itemset techniques to achieve
substantial speed-ups. Experiments show that Flexics is both accurate and
efficient, making it a useful tool for pattern-based data exploration.Comment: Accepted for publication in Data Mining & Knowledge Discovery journal
(ECML/PKDD 2017 journal track