This article proposes effective methods of measurements and computations of internal temperature of the dies of the Insulted Gate Bipolar Transistor (IGBT) and the diode mounted in the common case. The nonlinear compact thermal model of the considered device is proposed. This model takes into account both self-heating phenomena in both dies and mutual thermal couplings between them. In the proposed model, the influence of the device internal temperature on self and transfer thermal resistances is taken into account. Methods of measurements of each self and transfer transient thermal impedances occurring in this model are described and factors influencing the measurement error of these methods are analysed. Some results illustrating thermal properties of the investigated devices including the IGBT and the antiparallel diode in the common case are shown and discussed. Computations illustrating the usefulness of the proposed compact thermal model are presented and compared to the results of measurements. It is proved that differences between internal temperature of both dies included in the TO-247 case can exceed even 15 K.