2004
DOI: 10.1515/crll.2004.075
|View full text |Cite
|
Sign up to set email alerts
|

Lichtenbaum-Tate duality for varieties over p-adic fields

Abstract: ABSTRACT. S. Lichtenbaum has proved in [L1] that there is a nondegenerate pairingbetween the Picard group and the Brauer group of a nonsingular projective curve C over a p -adic field K (a finite extension of the p -adic numbers Q p ). On the level of divisors the pairing is induced by the norm map Br(K ) → Br(K) for finite extensions K /K . The nondegeneracy is proven by a reduction to Tate duality for commutative group schemes over p -adic fields. This reduction is achieved by explicit cocycle calculations i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
6
0
1

Year Published

2007
2007
2016
2016

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(7 citation statements)
references
References 17 publications
0
6
0
1
Order By: Relevance
“…Let C be a smooth projective geometrically connected curve over a field of characteristic zero, let Z be a finite nonempty collection of closed points, and let U be the complement of Z. Since Z = ?, we have 1 (see also [16]). The following lemma enables us to generalise this to open curves.…”
Section: Pseudo-motivic Homology Of Open Curvesmentioning
confidence: 93%
See 3 more Smart Citations
“…Let C be a smooth projective geometrically connected curve over a field of characteristic zero, let Z be a finite nonempty collection of closed points, and let U be the complement of Z. Since Z = ?, we have 1 (see also [16]). The following lemma enables us to generalise this to open curves.…”
Section: Pseudo-motivic Homology Of Open Curvesmentioning
confidence: 93%
“…(ii) This is immediate from the above and Hilbert's Theorem 90: (1) and Z 1 Z (X/k) D are tori, and 1 H 0 (X, Z) is the total Albanese variety of X (see [16,Theorem 3.6]).…”
Section: Pseudo-motivic Homology Of Open Varietiesmentioning
confidence: 98%
See 2 more Smart Citations
“…Однако и здесь (как и в более общем случае поля частных гензелева кольца дискретного нормирования с конечным полем вычетов) из зануления e(X) следует зануление δ(X) (см. [12], а также [4]). Однако для некоторых других полей, например, для поля рядов Лорана C((t)) это уже неверно: как показал недавно О. Виттенберг, e(X) = 0 для любого многообразия над полем когомологической размерности 1.…”
unclassified