2020
DOI: 10.1360/tb-2020-0618
|View full text |Cite
|
Sign up to set email alerts
|

Life-cycle based analytical theory of concrete-filled steel tubular structures and its applications

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
9
0
2

Year Published

2021
2021
2025
2025

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 15 publications
(11 citation statements)
references
References 21 publications
0
9
0
2
Order By: Relevance
“…Previous studies (Lu et al, 2011) defined the core concrete constitutive relationship under the action of temperature by changing the thermodynamic parameters of materials, such as heat conductivity, elastic modulus, and linear expansion coefficient. To facilitate finite element simulations and calculations, in this study, we revised the stress-strain relation of CFST proposed by Han et al (2020a), and proposed a stress-strain constitutive model under uniaxial compression considering the effect of temperature. The expression is given by:where xT=ε/ε0T, yT=σ/σ0T, β reflects the ductility of concrete and the amount of absorbed energy, ξ is the confinement coefficient of the specimens, f c is the axial compression strength of concrete, and T is the test temperature.…”
Section: Finite Element Numerical Analysismentioning
confidence: 99%
See 1 more Smart Citation
“…Previous studies (Lu et al, 2011) defined the core concrete constitutive relationship under the action of temperature by changing the thermodynamic parameters of materials, such as heat conductivity, elastic modulus, and linear expansion coefficient. To facilitate finite element simulations and calculations, in this study, we revised the stress-strain relation of CFST proposed by Han et al (2020a), and proposed a stress-strain constitutive model under uniaxial compression considering the effect of temperature. The expression is given by:where xT=ε/ε0T, yT=σ/σ0T, β reflects the ductility of concrete and the amount of absorbed energy, ξ is the confinement coefficient of the specimens, f c is the axial compression strength of concrete, and T is the test temperature.…”
Section: Finite Element Numerical Analysismentioning
confidence: 99%
“…CFSTs have been widely used in recent years for bridge construction in extremely cold conditions, due to their excellent mechanical properties. However, extreme ambient temperatures will affect the mechanical properties of the materials in CFST composite structure columns (Han, 2016;Han et al, 2020a). Therefore, it is critical to investigate the mechanical properties of CFST columns at low temperatures relevant to cold regions.…”
Section: Introductionmentioning
confidence: 99%
“…基于全寿命期的结构设计理念 [61] 的逐步推广,使混凝土结构得到长寿命与高性能提升,为既有混凝 土结构部品的再利用提供了有力支撑。通过既有结构、子结构及构件的再利用,可构建混凝土产业内循 环, 使结构隐含碳排放在城市更新的功能需求更迭中流动并得到充分利用, 而非一次利用、 直接 "销毁" 。 根据对结构功能更新需求程度,由低到高可采用修复加固、结构移位、构件再利用等方式实现。 修复加固方法通过检测评定结构性能退化与损伤状态,并对风险区域进行局部加固 [87,88] ,为既有结 构服役寿命延长提供安全保障,通过与适应性再生方法 [89] 相结合,可使既有结构得到充分利用。结构移 位是改变结构区位以适应城市规划的方法,通过同步顶升、旋转、平移等控制技术 [90] ,可实现上部结构 微损乃至无损状态下的移动与整体再利用。然而,城镇化快速发展带来的结构功能变更需求常较大,且 《科学通报》TB-2022-0055R2 修改稿 10 建筑部品耐久性存在较大差异 [91] ,导致结构整体再利用在大量更新情景下难以被接受。 "拆建协同" [92] 使结构拆解与新建相配合,将原结构中混凝土构件的逐件拆卸,并保障拆后构件的完整性 [93] ,进而依托 结构可拆装设计 [94] 或既有构件的再利用节点构造,应用于新建结构建设中,为城市更新中碳再用的实现 提供了更为灵活的路径 碳再用策略下,构件隐含碳排放在其服役的多个结构生命周期间的分配量受分配规则的影响,通常 再利用阶段分担的碳排放低于首次使用阶段 [76] ,从满足长期结构功能需求的角度,碳再用可实现约 40% 的碳减排 [34,95] 。…”
Section: 碳再用技术unclassified
“…《科学通报》TB-2022-0055R2 修改稿 泥水化进程而言,水泥基材料通过碳化反应理论上可以将熟料生产过程中释放的 CO 2 尽数吸收。然而, 混凝土结构构件体量较大,比表面积相对小,且混凝土表面覆盖的涂料、瓷砖等装饰材料会延缓混凝土 的碳化进程 [49] ,限制了构件的碳吸收,其中所含水泥熟料生产过程的相关碳排放仅 17%能在结构正常服 役期得到吸收 [39] ,因而混凝土结构的碳汇潜力仍有待挖掘。 1.3 混凝土结构与环境共生系统 即使考虑碳吸收能力,当前混凝土结构建造的净碳排放量仍是巨大的,成为近二十年来全球总碳排 放量持续上升与气候变化的重要诱因 [8] 。而气候变化将加速混凝土结构的耐久性退化,如因碳化或氯离 子侵蚀所导致的耐久性失效概率大幅增长 [5,50] ,同时引发的极端气象灾害加剧也将危害结构的正常服役 [51,52] 。这将进一步引发城市更新加速,带来更频繁的集中碳排放。因此,气候变化使混凝土结构与环境 系统间构成了具有动态耦合效应的双向影响 [53,54] 《科学通报》TB-2022-0055R2 修改稿 表征结构满足气候变化下人类与自然同步可持续发展需求的能力,作为低碳设计的关键属性。可持续的 理念最早于 1713 年由 Carlowitz 在森林管理与林业改革中提出 [56] ,1987 年联合国《Our Common Future》 报告明确了可持续发展的定义与目标 [57] ,为 1992 年《里约宣言》各国环境义务的确立提供基础。同于 1992 年提出的汉诺威原则 [58] 首次明确了面向可持续性的设计,并梳理了其具体特征,在人类社会可持续 [59] ,从经济性优化角度发展的结构减量 化技术 [60] 也兼有良好的碳减排效果。针对上述技术开展的低碳材料性能测试与校验、结构优化设计与功 能提升、低碳建造模式的全流程管控与基于全寿命期的结构设计 [61] 等,均可保障或提升低碳策略应用后 的结构抗力水平,为考虑可持续性的结构可靠性设计提供基础。 此外,考虑可持续性的结构可靠性设计关注气候变化适应(C2 量化表征) ,主要包含两类影响:( 1…”
unclassified
“…Concrete-filled double-skin steel tube (CFDST), which is composed of two concentric steel tubes with different outer perimeter and concrete infill between the two tubes, is a new type of composite structure [1]. Generally, while the ultimate capacity kept constant, CFDST has wider cross-section and greater flexural stiffness than the conventional concrete-filled steel tube (CFST), as the inner steel tube replaces part of the concrete core for this new type of sections.…”
Section: Introductionmentioning
confidence: 99%