Invasive nitrogen (N)-fixing plants often fundamentally change key ecosystem functions, particularly Ncycling. However, the consequences of this for litter decomposition, and the mechanisms that underpin ecosystem responses, remain poorly understood. Moreover, few studies have determined how nutrient pools and fluxes shift as invader density increases and whether these effects persist following invader removal, despite the importance of this for understanding the timing and magnitude of invader impacts in ecosystems. We tested how the decomposition rates of four cooccurring grass species were influenced by changes in the density of the globally invasive N-fixing shrub Cytisus scoparius L. (Scotch broom) and whether these effects persisted following invader removal. We used a series of laboratory decomposition assays to disentangle the roles of changes in both litter quality and soil properties associated with increases in broom density. Broom invasion created a soil environment, such as higher rates of net N-mineralisation, which retarded litter decomposition. Litter C/N ratios of co-occurring species decreased as broom density increased, yet this had no effect on decomposition rates. Most relationships between broom density and impacts were nonlinear; this could explain some of the reported variation in invasive species impacts across previous studies that do not account for invader density. Ecosystem properties only partially recovered following invader removal, as broom left a legacy of increased N-availability in both soils and litter. Our findings suggest that invasive Nfixer impacts on soil properties, such as N-availability, were more important than changes in litter quality in altering decomposition rates of co-occurring species.