The linear switched reluctance machine (LSRM) has all advantages of rotary switched reluctance machine including simple and rugged structure, absence of magnetic material and windings on translator, high reliability and appropriate performance over a wide range of speed. Like rotary switched reluctance motor with segmental rotor, segmental translator linear switched reluctance motor (STLSRM) has capability to produce higher output power/weight in comparison to the conventional linear switched reluctance motors. Due to high advantages of the STLSRM drive, various control algorithms including current control, model predictive control, direct force control, universal control and force distribution function are investigated for the first time to control the instantaneous thrust of this motor. Applying these algorithms to a typical three-phase STLSRM, simulation results are presented and they are compared together from the force ripple reduction point of view.