Human visual performance is not only better at the fovea and decreases with eccentricity, but also has striking radial asymmetries around the visual field: At a fixed eccentricity, it is better along (1) the horizontal than vertical meridian and (2) the lower than upper vertical meridian. These asymmetries, known as performance fields, are pervasive -they emerge for many visual dimensions, regardless of head rotation, stimulus orientation or display luminance- and resilient -they are not alleviated by covert exogenous or endogenous attention, deployed in the absence of eye movements. Performance fields have been studied exclusively during eye fixation. However, a major driver of everyday attentional orienting is saccade preparation, during which visual attention automatically shifts to the future eye fixation. This presaccadic shift of attention is considered strong and compulsory, and relies on fundamentally different neural computations and substrates than covert attention. Given these differences, we investigated whether presaccadic attention can compensate for the ubiquitous performance asymmetries observed during eye fixation. Our data replicate polar performance asymmetries during fixation and document the same asymmetries during saccade preparation. Crucially, however, presaccadic attention enhanced contrast sensitivity at the horizontal and lower vertical meridian, but not at the upper vertical meridian. Thus, instead of attenuating polar performance asymmetries, presaccadic attention exacerbates them.