Magnetic resonance spectroscopy (MRS) measures the two most common inhibitory and excitatory neurotransmitters, GABA and glutamate, in the human brain. However, the role of MRS-derived GABA and glutamate signals in relation to system-level neural signaling and behavior is not fully understood. In this study, we investigated levels of GABA and glutamate in the visual cortex of healthy human participants (both genders) in three functional states with increasing visual input. Compared with a baseline state of eyes closed, GABA levels decreased after opening the eyes in darkness and Glx levels remained stable during eyes open but increased with visual stimulation. In relevant states, GABA and Glx correlated with amplitude of fMRI signal fluctuations. Furthermore, visual discriminatory performance correlated with the level of GABA, but not Glx. Our study suggests that differences in brain states can be detected through the contrasting dynamics of GABA and Glx, which has implications in interpreting MRS measurements.
Oculomotor selection, spatial task relevance, and visual working memory (WM) are described as three processes highly intertwined and sustained by similar cortical structures. However, because task-relevant locations always constitute potential saccade targets, no study so far has been able to distinguish between oculomotor selection and spatial task relevance. We designed an experiment that allowed us to dissociate in humans the contribution of task relevance, oculomotor selection, and oculomotor execution to the retention of feature representations in WM. We report that task relevance and oculomotor selection lead to dissociable effects on feature WM maintenance. In a first task, in which an object's location was encoded as a saccade target, its feature representations were successfully maintained in WM, whereas they declined at nonsaccade target locations. Likewise, we observed a similar WM benefit at the target of saccades that were prepared but never executed. In a second task, when an object's location was marked as task relevant but constituted a nonsaccade target (a location to avoid), feature representations maintained at that location did not benefit. Combined, our results demonstrate that oculomotor selection is consistently associated with WM, whereas task relevance is not. This provides evidence for an overlapping circuitry serving saccade target selection and feature-based WM that can be dissociated from processes encoding task-relevant locations.
Both patients with eye movement disorders and healthy participants whose oculomotor range had been experimentally reduced have been reported to show attentional deficits at locations unreachable by their eyes. Whereas previous studies were mainly based on the evaluation of reaction times, we measured visual sensitivity before saccadic eye movements and during fixation at locations either within or beyond participants’ oculomotor range. Participants rotated their heads to prevent them from performing large rightward saccades. In this posture, an attentional cue was presented inside or outside their oculomotor range. Participants either made a saccade to the cue or maintained fixation while they discriminated the orientation of a visual noise patch. In contrast to previous reports, we found that the cue attracted visual attention regardless of whether it was presented within or beyond participants’ oculomotor range during both fixation and saccade preparation. Moreover, when participants aimed to look to a cue that they could not reach with their eyes, we observed no benefit at their actual saccade endpoint. This demonstrates that spatial attention is not coupled to the executed oculomotor program but instead can be deployed unrestrictedly also toward locations to which no saccade can be executed. Our results are compatible with the view that covert and overt attentional orienting are guided by feedback projections of visual and visuomotor neurons of the gaze control system, irrespective of oculomotor limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.