2017
DOI: 10.3842/sigma.2017.035
|View full text |Cite
|
Sign up to set email alerts
|

Liouville Correspondences between Integrable Hierarchies

Abstract: Abstract. In this paper, we study explicit correspondences between the integrable Novikov and Sawada-Kotera hierarchies, and between the Degasperis-Procesi and Kaup-Kupershmidt hierarchies. We show how a pair of Liouville transformations between the isospectral problems of the Novikov and Sawada-Kotera equations, and the isospectral problems of the Degasperis-Procesi and Kaup-Kupershmidt equations relate the corresponding hierarchies, in both positive and negative directions, as well as their associated conser… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
9
0
4

Year Published

2018
2018
2023
2023

Publication Types

Select...
7

Relationship

2
5

Authors

Journals

citations
Cited by 11 publications
(13 citation statements)
references
References 93 publications
(183 reference statements)
0
9
0
4
Order By: Relevance
“…Although the link is less direct, integrable equations in the same hierarchy also share properties, such as conservation laws and soliton solutions. The fact that the Novkiov equation is related to the SK hierarchy was already established in [9], see also [16]. Although in this case aN has a complication not in the potential SK flow, in that in equation (1.7) only a single t derivative term appears, aN remains superficially simpler, so we would argue that aN is the right equation to study first.…”
Section: Introductionmentioning
confidence: 77%
“…Although the link is less direct, integrable equations in the same hierarchy also share properties, such as conservation laws and soliton solutions. The fact that the Novkiov equation is related to the SK hierarchy was already established in [9], see also [16]. Although in this case aN has a complication not in the potential SK flow, in that in equation (1.7) only a single t derivative term appears, aN remains superficially simpler, so we would argue that aN is the right equation to study first.…”
Section: Introductionmentioning
confidence: 77%
“…Чтобы получить локальные симметрии уравнения аДП из выражения для Q(θ), мы берем s (1) s (2) , s (3) , заданные тремя возможными асимптотическими разложениями для s при больших |θ|. Одно разложение уже определено в формуле (16), а остальные получаются из него путем замены в разложении θ 1/3 на ωθ 1/3 и ω 2 θ 1/3 , где ω = (−1 + √ 3i)/2 есть кубический корень из единицы. Подстановка этих асимптотических разложений в Q(θ) и разложение по обратным степеням θ 1/3 дают две первые нетривиальные локальные симметрии уравнения аДП:…”
Section: симметрииunclassified
“…раздел 3). Связь между уравнениями ДП и KK, в свою очередь, изучалась в недавней работе [16]. Одной из мотиваций к изучению ПБ уравнения аДП (5) является продвижение вперед в анализе решений уравнения ДП (3), многие из которых уже известны.…”
unclassified
See 1 more Smart Citation
“…Eq. (2) was proved to be integrable since it enjoys Lax-pair and bi-Hamiltonian structure [14], and is equivalent to the first equation in the negative flow of the Sawada-Kotera hierarchy via Liouville transformation [16]. The Novikov equation 2also admits peaked solitons over the line R and unit circle S 1 [14,20], which can be derived by the inverse spectral method.…”
mentioning
confidence: 99%