Interleukin-4 (IL-4) is a CD132-dependent cytokine known to activate the Jak-STAT pathway in different cells and cell lines. Although IL-4 has been demonstrated previously to be an agonist in human neutrophils, its capacity to activate different cell signaling pathways in these cells has never been investigated. Two types of IL-4 receptor (IL-4R) exist: the Type I (CD132/IL-4Ralpha heterodimer) and the Type II (IL-4Ralpha/IL-13Ralpha1 heterodimer). In a previous study, we demonstrated that neutrophils express the Type I receptor. Herein, using flow cytometry, we demonstrated that neutrophils, unlike U-937 cells, do not express IL-13Ralpha1 and IL-13Ralpha2 and confirmed the expression of CD132 and IL-4Ralpha on their surface. We also demonstrated that IL-4 induced phosphorylation of Syk, p38, Erk-1/2, JNK, Jak-1, Jak-2, STAT6, and STAT1 and that treatment of cells with the inhibitors piceatannol, SB203580, PD98059, or AG490 reversed the ability of IL-4 to delay neutrophil apoptosis. Using RT-PCR, we demonstrated for the first time that neutrophils express mRNA for all suppressor of cytokine signaling (SOCS) members, namely SOCS1-7 and cytokine-inducible Src homology 2 protein. It is interesting that IL-4 increased expression of SOCS3 at the mRNA and protein levels. The effect of IL-4 on SOCS3 protein expression was increased markedly when the proteasome inhibitor MG132 was added to the cultures, but this was inhibited by cycloheximide, suggesting that SOCS3 is de novo-synthesized in response to IL-4. We conclude that neutrophils express only the Type I IL-4R on their surface and that IL-4 signals via different cell signaling pathways, including the Jak/STAT/SOCS pathway.