2010
DOI: 10.1088/0951-7715/23/7/009
|View full text |Cite
|
Sign up to set email alerts
|

Lipschitz deviation and embeddings of global attractors

Abstract: Kaloshin (1999 Nonlinearity 12 1263-75) proved that it is possible to embed a compact subset X of a Hilbert space with upper box-counting dimension d < k into R N for any N > 2k + 1, using a linear map L whose inverse is Hölder continuous with exponent α < (N − 2d)/N (1 + τ (X)/2), where τ (X) is the 'thickness exponent' of X. More recently, Ott et al (2006 Ergod. Theory Dyn. Syst. 26 869-91) studied the effect of such embeddings on the Hausdorff dimension of X, and showed that for 'most' linear mapsThey al… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
11
0
1

Year Published

2013
2013
2021
2021

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(12 citation statements)
references
References 35 publications
0
11
0
1
Order By: Relevance
“…One can deduce from this [81,107] that the Lipschitz deviation of the Navier-Stokes attractor is zero, even when we only have ∈ . Proposition 43.…”
Section: Zero Lipschitz Deviationmentioning
confidence: 95%
See 1 more Smart Citation
“…One can deduce from this [81,107] that the Lipschitz deviation of the Navier-Stokes attractor is zero, even when we only have ∈ . Proposition 43.…”
Section: Zero Lipschitz Deviationmentioning
confidence: 95%
“…The Lipschitz deviation, used in the statement of the theorem given here, was introduced by Olson & Robinson [80], with the definition revised and investigated further by Pinto de Moura & Robinson [81].…”
Section: Embedding and Parametrisationmentioning
confidence: 99%
“…Поэтому редуцированная ДС (1.2) также оказывается непрерывной по Гёльдеру, и, при некоторых естественных дополнительных условиях на исходную диссипативную систему, константа Гёльдера α может быть сделана сколь угодно близкой к единице за счет увеличения размерности N (см. [12], [26], [29] и цитируемую там литературу). Также известно, что редуцированная ДС S(t) может быть описана системой ОДУ (1.3) в R N для некоторого непрерывного по Гёльдеру на P A векторного поля F (см.…”
Section: )unclassified
“…Theorems 1.3 and 1.5 remain true when one replaces the thickness exponent of A with the Lipschitz deviation dev( A ) [22]. Roughly speaking, τ ( A ) measures how well A can be approximated by finite-dimensional subspaces of H , while dev( A ) measures how well A can be approximated by the graphs of Lipschitz functions defined on finite-dimensional subspaces of H (with lower values of τ ( A ) and dev( A ) indicating better approximability).…”
Section: Introductionmentioning
confidence: 99%