Several ionic liquids (ILs) of relatively high electrical conductivity (K) and surface tension (γ) are electrosprayed under vacuum from electrochemically sharpened and roughened tungsten wires with tip radii R varying from 2 to 80 μm. All our tips exhibit a purely ionic emission, confirming the versatility of these ionic liquid ion sources (ILIS) previously demonstrated by Lozano and Martínez-Sánchez using R∼20 μm. A drastic increase in ion current from 50 to 1000 nA results when increasing R from 2.5 up to 29 μm and above, offsetting the considerable disadvantage in current emission level previously observed for ILIS (∼200 nA) versus conventional internally fed capillary tube emitters (∼1000 nA). Experiments with shielding electrodes show that this increase in current is not due to a reduction in space charge effects associated to the higher onset voltages required at smaller curvatures. It results from a reduction in flow impedance at increasing R. Long-term stable Taylor cone operation was not achieved with any of the ILs tested, even when alternating the tip voltage to minimize electrochemical reactions.