Background
Long non‐coding RNA potassium voltage‐gated channel subfamily Q member 1 opposite strand 1 (lnc‐KCNQ1OT1) represses inflammation and multiple organ dysfunction, whereas its clinical value in sepsis is unclear. Thus, this study aimed to explore this issue.
Methods
Lnc‐KCNQ1OT1 from peripheral blood mononuclear cells were detected by RT‐qPCR in 116 sepsis patients and 60 healthy controls (HCs). Moreover, sepsis patients were followed‐up until death or up to 28 days.
Results
Lnc‐KCNQ1OT1 decreased in patients with sepsis than in HCs (p < 0.001). In sepsis patients, lnc‐KCNQ1OT1 was negatively correlated with sequential organ failure assessment (SOFA) scores (r = −0.344, p < 0.001) and several SOFA subscale scores (including respiratory system, coagulation, liver, and renal systems) (all r < 0, p < 0.05). Furthermore, lnc‐KCNQ1OT1 was negatively correlated with CRP (r = −0.386, p < 0.001), TNF‐α (r = −0.332, p < 0.001), IL‐1β (r = −0.319, p < 0.001), and IL‐6 (r = −0.255, p = 0.006). Additionally, lnc‐KCNQ1OT1 levels were lower in sepsis deaths than in sepsis survivors (p < 0.001), and the receiver operating characteristic curve showed that lnc‐KCNQ1OT1 had an acceptable ability to predict 28‐day mortality (area under the curve: 0.780, 95% confidence interval: 0.678–0.882). Meanwhile, its ability to predict 28‐day mortality risk was higher than that of CRP, TNF‐α, IL‐1β, and IL‐6, but slightly lower than the SOFA score and acute physiology and chronic health evaluation II score.
Conclusion
Lnc‐KCNQ1OT1 serves as a potential biomarker for monitoring disease severity and prognosis in patients with sepsis.