Background: Neuropathic pain (NP) is the main form of chronic pain, caused by damage to the nervous system and dysfunction. Methods: Here, we explore the key molecules involved in the development of NP condition via identification of lncRNA-miRNA-mRNA expression pattern of patients with NP. We identified differentially expressed miRNAs, lncRNA and mRNA through a comprehensive analysis strategy. Subsequently, we used bioinformatics approach to perform pathway enrichment analysis on DEGs and protein-protein interaction analysis. Combined with the three datasets, the lncRNA-miRNA-mRNA network was constructed. It will then be used as targets for drug prediction. Results: The results showed that a total of 8,251 DEGs (4,193 upregulated and 4,058 downregulated) were identified from the three microarray datasets, 959 DEmiRs (455 upregulated and 504 downregulated), 2,848 DElncs (1,324 upregulated and 1,524 downregulated). GO analysis showed that DEGs are mainly enriched in blood circulation, regulation of membrane potential and regulation of ion transmembrane transport. KEGG results showed that DEGs are enriched in neuroactive ligand-receptor interaction, PI3K-Akt signaling pathway and MAPK signaling pathway. When the correlation is set to above 0.8, a total of 31 lncRNAs, 36 miRNAs and 24 mRNAs were screened in the lncRNA-miRNA-mRNAs network. The results of drug prediction indicated the targeted drugs mainly include INDOMETHACIN, GLUTAMIC ACID and PIRACETAM. Conclusion: The lncRNA-miRNA-mRNA network has been carried out a comprehensive biological information analysis and predicted the potential therapeutic application of drugs in patients with NP. The corresponding data has a certain reference for studying the pathological mechanism of NP.