A subunit complex was formed from the core light-harvesting complex (LH1) of bacteriochlorophyll(BChl)-b-containing Rhodopseudomonas viridis. The addition of octyl glucoside to a carotenoid-depleted Rps. viridis membrane preparation resulted in a subunit complex absorbing at 895 nm, which could be quantitatively dissociated to free BChl b and then reassociated to the subunit. When carotenoid was added back, the subunit could be reassociated to LH1 with a 25% yield. Additionally, the Rps. viridis α- and β-polypeptides were isolated, purified, and then reconstituted with BChl b. They formed a subunit absorbing near 895 nm, similar to the subunit formed by titration of the carotenoid depleted membrane, but did not form an LH1-type complex at 1015 nm. The same results were obtained with the β-polypeptide alone and BChl b. Isolated polypeptides were also tested for their interaction with BChl a. They formed subunit and LH1-type complexes similar to those formed using polypeptides isolated from BChl-a-containing bacteria but displayed 6-10 nm smaller red shifts in their long-wavelength absorption maxima. Thus, the larger red shift of BChl-b-containing Rps. viridis is not attributable solely to the protein structure. The β-polypeptide of Rps. viridis differed from the other β-polypeptides tested in that it could form an LH1-type complex with BChl a in the absence of the α- and γ-polypeptides. It apparently contains the necessary information required to assemble into an LH1-type complex. When the γ-polypeptide was tested in reconstitution with BChl a and BChl b with the α- and β-polypeptides, it had no effect; its role remains undetermined.