2005
DOI: 10.1016/j.ijepes.2005.06.004
|View full text |Cite
|
Sign up to set email alerts
|

Logarithmic barrier-augmented Lagrangian function to the optimal power flow problem

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
28
0
3

Year Published

2012
2012
2022
2022

Publication Types

Select...
3
3
2

Relationship

0
8

Authors

Journals

citations
Cited by 34 publications
(31 citation statements)
references
References 5 publications
0
28
0
3
Order By: Relevance
“…We can now formally state the OPF problem that we seek to solve: minimize the power loss (5), subject to power flow constraints (1), power injection constraints (2), and voltage regulation constraints (4).…”
Section: B Controllable Devices and Control Objectivementioning
confidence: 99%
See 1 more Smart Citation
“…We can now formally state the OPF problem that we seek to solve: minimize the power loss (5), subject to power flow constraints (1), power injection constraints (2), and voltage regulation constraints (4).…”
Section: B Controllable Devices and Control Objectivementioning
confidence: 99%
“…Various algorithms have been proposed to find local optima of OPF, e.g., successive linear/quadratic programming [2], trust-region based methods [3], Lagrangian Newton method [4], and interior-point methods [5]. However, not only is convergence of these algorithms not guaranteed, but also a local optimum can be highly suboptimal.…”
Section: Introductionmentioning
confidence: 99%
“…Let be feasible for SOCP, and define and according to (8) and (9). It is straightforward to check that the point satisfies (10a)-(10c) and therefore Since satisfies (6f), one has and therefore for , i.e., .…”
Section: G Proof Of Corollarymentioning
confidence: 99%
“…These algorithms use nonlinear power flow equations and therefore 1) can be used in applications like voltage regulation and volt/var control; 2) have physically implementable solutions; 3) apply to both transmission and distribution networks. Representative algorithms of this kind include successive linear/ quadratic programming [6], trust-region based methods [7], Lagrangian Newton method [8], and interior-point methods [9]. Some of these algorithms, especially those based on NewtonRalphson, are quite successful empirically.…”
mentioning
confidence: 99%
“…Muitos trabalhos foram desenvolvidos na tentativa de resolvê-lo utilizando diferentes técnicas de Otimização Não-Linear, Linear e Métodos Heurísticos, entre eles citam-se: GRANVILLE [12], WU et al [22] e TORRES & QUINTANA [21] os quais aplicaram um algoritmo Primal-Dual Barreira Logarítmica na resolução do problema de Fluxo de Potência Ótimo e, as condições de Karush-Kuhn-Tuker (KKT) foram satisfeitas utilizando o método de Newton, sendo a maior dificuldade do algoritmo a escolha do parâmetro de Barreira; BAPTISTA et al [1][2][3] resolveram o problema utilizando uma função Lagrangiana Aumentada-Barreira Logarítmica; BAPTISTA et al [4] e SOUSA et al [18][19][20] utilizaram uma função Lagrangiana Barreira Modificada. Mais recentemente, lembra-se de CAPITANESCU et al [5][6][7] que analisa o desempenho de três algoritmos de pontos interiores e sua aplicação ao FPO.…”
Section: Introductionunclassified