Polynomial evaluation is important across a wide range of application domains, so significant work has been done on accelerating its computation. The conventional algorithm, referred to as Horner's rule, involves the least number of steps but can lead to increased latency due to serial computation. Parallel evaluation algorithms such as Estrin's method have shorter latency than Horner's rule, but achieve this at the expense of large hardware overhead. This paper presents an efficient polynomial evaluation algorithm, which reforms the evaluation process to include an increased number of squaring steps. By using a squarer design that is more efficient than general multiplication, this can result in polynomial evaluation with a 57.9% latency reduction over Horner's rule and 14.6% over Estrin's method, while consuming less area than Horner's rule, when implemented on a Xilinx Virtex 6 FPGA. When applied in fixed point function evaluation, where precision requirements limit the rounding of operands, it still achieves a 52.4% performance gain compared to Horner's rule with only a 4% area overhead in evaluating 5 th degree polynomials.