A series of platinum(II) terpyridyl alkynyl complexes, [Pt{4'-(4-R1-C6H4)terpy}(C[triple chemical bond]C-C6H4-R(2)-4)]ClO4 (terpy=2,2':6',2''-terpyridyl; R1=R2=N(CH3)2 (1); R1=N(CH3)2, R2=N-[15]monoazacrown-5 (2); R1=CH3, R2=N(CH3)2 (3); R1=N(CH3)2, R2=H (4); R1=CH3, R2=H (5)), has been synthesized and the photophysical properties of the complexes have been examined through measurement of their UV/Vis absorption spectra, photoluminescence spectra, and transient absorptions. Complex 3 shows a lowest-energy absorption corresponding to a ligand-to-ligand charge-transfer (LLCT) transition from the acetylide to the terpyridyl ligand, whereas 4 shows an intraligand charge-transfer (ILCT) transition from the pi orbital of the 4'-phenyl group to the pi* orbital of the terpyridyl. Upon protonation of the amino groups in 3 and 4, their lowest-energy excited states are switched to dpi(Pt)-->pi*(terpy) metal-to-ligand charge-transfer (MLCT) states. The lowest-energy absorption for 1 and 2 may be attributed to an LLCT transition from the acetylide to the terpyridyl. Upon addition of an acid to a solution of 1 or 2, the amino group on the acetylide is protonated first, followed by the amino group on the terpyridyl. Thus, the lowest excited state of 1 and 2 can be successively switched from the LLCT state to the ILCT state and then to the MLCT state by controlling the amount of the acid added. Such switches in the excited state are fully reversible upon subsequent addition of a base to the solution. Sequential addition of alkali metal or alkaline earth metal ions and then an acid to a solution of 2 also leads to switching of its lowest excited state from the LLCT state, first to the ILCT state and then to the MLCT state. All of the complexes exhibit a transient absorption of the terpyridyl anion radical, which is present in all of the LLCT, ILCT, and MLCT states. However, the shape of the transient absorption spectrum depends on both the substitution pattern on the terpyridyl moiety and the nature of the excited state.