MicroRNAs (miRNAs) are important players in the modulation of cellular functions and contribute substantially to epigenetic changes in the expression of genes. Moreover, the distribution of miRNAs via exosomes and ectosomes opens a vast field of intraorganismal communication, with the potential of spreading pathological deviations, but also curative effects induced by protective agents. Interactions between melatonin and microRNAs are of particular interest, as melatonin is a highly pleiotropic regulator of numerous functions in every organ. The effects of melatonin in correcting pathological alterations in miRNA composition are reviewed, along with the corresponding reversal of cell biological or physiological functions to normal. Additionally, knowledge on the influence of miRNAs on melatonin formation and expression of a melatonin receptor has been considered. The fields in which melatonin has been shown to influence miRNAs are as diverse as metabolic syndrome, liver steatosis, immunology, amyloid toxicity, progenitor cells, and cancer. Readers are encouraged to contribute to systematic studies on melatonin effects on miRNAs using modern RNA sequencing techniques.