Since its first observation in the 18th century, the diffusion phenomenon has been actively studied by many researchers. Diffusion-weighted imaging (DWI) is a technique to probe the diffusion of water molecules and create a MR image with contrast based on the local diffusion properties. The DWI pixel intensity is modulated by the hindrance the diffusing water molecules experience. This hindrance is caused by structures in the tissue and reflects the state of the tissue. This characteristic makes DWI a unique and effective tool to gain more insight into the tissue's pathophysiological condition. In the past decades, DWI has made dramatic technical progress, leading to greater acceptance in clinical practice. In the abdominal region, however, acquiring DWI with good quality is challenging because of several reasons, such as large imaging volume, respiratory and other types of motion, and difficulty in achieving homogeneous fat suppression. In this review, we discuss technical advancements from the past decades that help mitigate these problems common in abdominal imaging. We describe the use of scan acceleration techniques such as parallel imaging and compressed sensing to reduce image distortion in echo planar imaging. Then we compare techniques developed to mitigate issues due to respiratory motion, such as free-breathing, respiratory-triggering, and navigator-based approaches. Commonly used fat suppression techniques are also introduced, and their effectiveness is discussed. Additionally, the influence of the abovementioned techniques on image quality is demonstrated. Finally, we discuss the current and future clinical applications of abdominal DWI, such as whole-body DWI, simultaneous multiple-slice excitation, intravoxel incoherent motion, and the use of artificial intelligence. Abdominal DWI has the potential to develop further in the future, thanks to scan acceleration and image quality improvement driven by technological advancements. The accumulation of clinical proof will further drive clinical acceptance.