Preclinical toxicity screening of the new retinal compounds is an absolute requirement in the pathway of further drug development. Since retinal neuron cultivation and in vivo studies are relatively expensive and time consuming, we aimed to create a fast and reproducible ex vivo system for retinal toxicity screening. For this purpose, we used rat retinal explant culture that was retrogradely labeled with the FluoroGold before the isolation. Explants were exposed to a toxic concentration of gentamicin and ciliary neurotrophic factor (CNTF), a known neuroprotective agent. The measured outcomes showed the cell density in retinal ganglion cell layer (GCL) and the activity of lactate dehydrogenase (LDH) in the culture medium. Gentamicin-induced oxidative stress resulted in retinal cell damage and rapid LDH release to the culture medium (p < 0.05). Additional CNTF supplementation minimized the cell damage, and the increase of LDH release was insignificant when compared to LDH levels before gentamicin insult (p > 0.05). As well as this, the LDH activity was directly correlated with the cell count in GCL (R = −0.84, p < 0.00001), making a sensitive marker of retinal neuron damage. The FLOREC protocol could be considered as a fast, reproducible, and sensitive method to detect neurotoxicity in the screening studies of the retinal drugs.