This paper presents an integrated method to obtain optimal market operation and regulation with the objective of reducing the market price and increasing the electricity consumption in hydro-dominated electricity markets, in which giant cascaded hydropower facilities along different rivers are main power suppliers. To this end, a comprehensive indicator composed of market prices and electricity consumption is proposed to evaluate the situation of hydro-dominated market operation. Moreover, an iterative algorithm is proposed to investigate the strategic behaviors of power suppliers and to simulate the operation of the market. Furthermore, an integrated solution methodology based on a multi-core parallel tabu genetic algorithm (MPTGA) is proposed to provide the optimal assignment of bilateral contracts, considering the market simulation, in order to achieve the optimal market regulation. The results from the case study, with real data based on Yunnan's electricity market, demonstrate that the proposed indicator and method are effective and efficient to simulate and regulate the market operation, and the effects of MPTGA are discussed last.