Machine learning methods have now become an optional technique in Earth science research, and such data-driven solutions have also made tremendous progress in weather forecasting and climate prediction in recent years. Since climate data are typically time series, the neural network layers, which can identify the intrinsic connections between the points of the sequence and features in two-dimensional data, perform particularly well for climate prediction. The North Atlantic Oscillation (NAO) is a prominent atmospherical mode in the northern hemisphere, with the frequency change characteristic of sea level pressure (SLP) in the North Atlantic sector. One of the reasons why NAO prediction is still challenging is that NAO is also proven to be influenced by other climate circulations, the most significant of which is the interaction between El Niño-Southern Oscillation (ENSO) and NAO. Therefore, sea surface temperature (SST) in the Pacific Ocean used to characterize ENSO is also one of the factors that contribute to the evolution of NAO and can be used as an input factor to predict the NAO. In this paper, the seasonal lag correlation between ENSO and NAO is explored and analyzed. The interaction has been considered in both short-term forecasting and midterm prediction of the NAO variability. The monthly NAO index (NAOI) fluctuation is predicted using the Niño indices based on the RF-Var model, and the accuracy achieves 68% when the lead time is about three months. In addition, integrating multiple physical variables directly related to the NAO and Pacific SST, the short-term NAO forecasting is conducted using a multi-channel neural network named AccNet with trajectory gated recursive unit (TrajGRU) layer. AccNet has the ability to identify the mechanism of the high-frequency variation in several days, and the NAO variability is indicated by SLP. The loss function of AccNet is set to anomaly correlation coefficient (ACC), which is the indicator that verifies spatial correlation in geoscience. Forecasting extreme events of NAO between 2010 and 2021, AccNet presents higher flexibility compared against other structures that can capture spatial-temporal features.