We consider Markovian many-server systems with admission control operating in a Quality-and-Efficiency-Driven (QED) regime, where the relative utilization approaches unity while the number of servers grows large, providing natural Economies-of-Scale. In order to determine the optimal admission control policy, we adopt a revenue maximization framework, and suppose that the revenue rate attains a maximum when no customers are waiting and no servers are idling. When the revenue function scales properly with the system size, we show that a nondegenerate optimization problem arises in the limit. Detailed analysis demonstrates that the revenue is maximized by nontrivial policies that bar customers from entering when the queue length exceeds a certain threshold of the order of the typical square-root level variation in the system occupancy. We identify a fundamental equation characterizing the optimal threshold, which we extensively leverage to provide broadly applicable upper/lower bounds for the optimal threshold, establish its monotonicity, and examine its asymp-totic behavior, all for general revenue structures. For linear and exponential revenue structures, we present explicit expressions for the optimal threshold.