A novel single-switch power module has been developed, featuring a laminated blade connector for low inductance interconnect to a busbar. The module was designed, optimized and experimentally validated as part of a high frequency three-phase converter, demonstrating parasitic inductances of less than one nano henry for the module and as low as five nano henries for the converter phase-leg commutation loop. The flexible plug-in hardware facilitated direct comparison of switching performance between three different chipsets, including a 150A and a 300A hybrid designs using the fastest 1200V silicon IGBTs with silicon carbide (SiC) Schottky diodes, as well as a 150A all-SiC module with emerging SiC MOSFETs. The results were also compared with switching performance of standard modules. First, the impact of parasitic inductance on switching performance was quantified by testing the same 300A hybrid chipset in an industry-standard module. Compared to the low inductance blade POL module, the standard module had 65% higher voltage overshoot and 30% higher total switching losses. Second, the switching performance of the 150A, 1200V fast IGBT, in either standard silicon or the hybrid blade module, was compared with the all-SiC blade module under the same test conditions. The IGBT switching losses of the standard silicon module were 3.5 times higher, while the hybrid blade module losses were 2.5 times higher than those of the all-SiC module. The new low inductance blade module is an excellent package for the new generation of fast silicon IGBTs and the emerging SiC power devices. The module will enable efficient power conversion at significantly higher switching frequencies and power densities.