Please check the document version of this publication:• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. Abstract. The axial dependency of the central-axis value of the heavy particle density and temperature of surface-wave plasmas is studied using Rayleigh scattering (RyS). The plasma is generated at a frequency of 2.45 GHz in argon by a surfatron operating under the standard settings of a power of 45 W, a flow rate of 50 sccm and a pressure of 20 mbar. To investigate the effect of the pressure on the gas temperature, we also investigated 6 and 10 mbar plasmas. By using a two-dimensional intensified CCD array we could determine and eliminate the influence of false stray light, a major disturbing factor in the determination of the Rayleigh signal. In order to trace the energy fluxes that determine the gas temperature, we performed Thomson scattering so that the properties of the electron gas are known. It is found that the gas temperature, T a, depends on the wall temperature and the product of the gas pressure and the electron pressure. The latter implies that Ta follows the electron density axially, meaning that it is highest at the launcher and decreases monotonically in the wave propagation direction. The maximum gas temperature of around Ta = 800 K is found close to the launcher for the highest gas pressure of 20 mbar. For lower pressures we find lower Ta values. The extrapolation of Ta toward the end of the plasma column leads to a temperature of about 320 K. This study reveals that, for the argon plasmas under study, the central-axis values of the gas temperature are determined by the balance between the heating of the gas by means of elastic electron collisions and the cooling due to heat conduction from the center to the wall.