Pt/TiO x /Pt resistive switching (RS) devices are considered to be amongst the most promising candidates in memristor family and the technology transfer to flexible substrates could open the way to new opportunities for flexible memory implementations. Hence, an important goal is to achieve a fully flexible RS memory technology. Nonetheless, several fabrication challenges are present and must be solved prior to achieving reliable device fabrication and good electronic performances. Here, we propose a fabrication method for the successful transfer of Pt/TiO x /Pt stack onto flexible Parylene-C substrates. The devices were electrically characterised, exhibiting both digital and analogue memory characteristics, which are obtained by proper adjustment of pulsing schemes during tests. This approach could open new application possibilities of these devices in neuromorphic computing, data processing, implantable sensors and bio-compatible neural interfaces.S Online supplementary data available from stacks.iop.org/NANO/0/000000/mmedia