2015
DOI: 10.3390/s150820717
|View full text |Cite
|
Sign up to set email alerts
|

Low Power Wireless Smoke Alarm System in Home Fires

Abstract: A novel sensing device for fire detection in domestic environments is presented. The fire detector uses a combination of several sensors that not only detect smoke, but discriminate between different types of smoke. This feature avoids false alarms and warns of different situations. Power consumption is optimized both in terms of hardware and software, providing a high degree of autonomy of almost five years. Data gathered from the device are transmitted through a wireless communication to a base station. The … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

1
7
0
1

Year Published

2016
2016
2024
2024

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 30 publications
(11 citation statements)
references
References 17 publications
1
7
0
1
Order By: Relevance
“…Oleh karena itu kebakaran dapat terjadi di mana saja, seperti di hutan, di tempat kerja, di perumahan, dan di tempat lainnya. Kebakaran seharusnya dapat ditanggulangi secara dini, yaitu dengan mendeteksi munculnya asap [12] dan titik api [7]. Lebih jauh, pendeteksian dini untuk asap sangat penting bahkan hal ini menjadi standar pembangunan gedung-gedung [3].…”
Section: Pengertian Kebakaran Dan Penanganannyaunclassified
“…Oleh karena itu kebakaran dapat terjadi di mana saja, seperti di hutan, di tempat kerja, di perumahan, dan di tempat lainnya. Kebakaran seharusnya dapat ditanggulangi secara dini, yaitu dengan mendeteksi munculnya asap [12] dan titik api [7]. Lebih jauh, pendeteksian dini untuk asap sangat penting bahkan hal ini menjadi standar pembangunan gedung-gedung [3].…”
Section: Pengertian Kebakaran Dan Penanganannyaunclassified
“…This system provides detection results with a false negative error rate of 4% and a false positive rate of 2%. Aponte et al [8] introduced a hardware solution using different sensors such as CO, smoke and temperature sensors. Xuehui et al [9] used a camera and different characteristics such as texture, wavelet, and color edge orientation and proposed an AdaBoost-like classifier.…”
Section: Introductionmentioning
confidence: 99%
“…Andrew et al [ 31 ] utilized the principal component analysis (PCA)-PNN scheme to reduce and classify the features extracted from the measurements of the gas sensors, dust particles, temperature sensors, and humidity sensors for classifying incipient stage fires in buildings. Luis et al [ 32 ] integrated a CO sensor, a smoke sensor, temperature sensors, a microcontroller, a short-range radio transceiver, a battery, a capacitive touch button, a LED, and a buzzer into a novel sensing device and developed a fire detection algorithm for home fire detection in indoor environments.…”
Section: Introductionmentioning
confidence: 99%