Li3VO4 (LVO) is a highly promising anode material for lithium-ion batteries, owing to its high capacity and stable discharge plateau. However, LVO faces a significant challenge due to its poor rate capability, which is mainly attributed to its low electronic conductivity. To enhance the kinetics of lithium ion insertion and extraction in LVO anode materials, a conductive polymer called poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is applied to coat the surface of LVO. This uniform coating of PEDOT:PSS improves the electronic conductivity of LVO, thereby enhancing the corresponding electrochemical properties of the resulting PEDOT:PSS-decorated LVO (P-LVO) half-cell. The charge/discharge curves between 0.2 and 3.0 V (vs. Li+/Li) indicate that the P-LVO electrode displays a capacity of 191.9 mAh/g at 8 C, while the LVO only delivers a capacity of 111.3 mAh/g at the same current density. To evaluate the practical application of P-LVO, lithium-ion capacitors (LICs) are constructed with P-LVO composite as the negative electrode and active carbon (AC) as the positive electrode. The P-LVO//AC LIC demonstrates an energy density of 107.0 Wh/kg at a power density of 125 W/kg, along with superior cycling stability and 97.4% retention after 2000 cycles. These results highlight the great potential of P-LVO for energy storage applications.