Background: One of the most prevalent bacterial infections in children is urinary tract infection (UTI), which has become a major concern with increasing resistance of the pathogens to the routinely used antimicrobial agents. The aim of the study is to determine the antimicrobial susceptibility patterns of pediatric UTI-causing pathogens, including ESBL-producing bacteria, in Saudi Arabia. Methods: This cross-sectional retrospective study was conducted to ascertain the frequency of isolation and the antimicrobial resistance pattern of uropathogens among children aged 0–15 years. The data from the urine cultures was collected during 2019–2020 at the King Fahad Medical City, a major tertiary hospital in Riyadh, Saudi Arabia. A total of 1022 urine samples from patients diagnosed with urinary tract infections (UTIs) were collected for this study. Microbial species present in the samples were cultured and identified using standard biochemical techniques. To assess the resistance of these strains to antimicrobial drugs, an in vitro method was employed, and the criteria set by the Clinical Laboratory Standard Institute (CLSI) were followed. In addition, a double-disc synergy test was conducted to identify strains of E. coli that produce extended-spectrum beta-lactamase (ESBL). Results: The predominant pathogens were E. coli (58.6%), followed by Klebsiella sp. (23.9%). E. coli isolates were more sensitive to meropenem and ertapenem in 99.2% of cases, followed by amikacin (99%). Klebsiella sp. were sensitive to amikacin in 97.1% of cases, followed by meropenem and ertapenem (92.2% in both). The highest sensitivities of antimicrobials toward ESBL were for meropenem and ertapenem (100% in both), followed by amikacin (99%). Conclusions: Our study recommends using local antibiotic sensitivity data for empirical UTI treatment. Amikacin, ertapenem, and meropenem are effective intravenous options. Cephalosporin, cefuroxime, amoxicillin/clavulanic acid, and nitrofurantoin are suitable oral choices. No significant changes in antimicrobial susceptibility were observed during the COVID-19 pandemic. Further research is needed to assess potential pandemic-related alterations.