2022
DOI: 10.1109/lcsys.2021.3055454
|View full text |Cite
|
Sign up to set email alerts
|

Lyapunov-Based Real-Time and Iterative Adjustment of Deep Neural Networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
23
0
2

Year Published

2022
2022
2025
2025

Publication Types

Select...
5
2
1

Relationship

1
7

Authors

Journals

citations
Cited by 45 publications
(29 citation statements)
references
References 20 publications
0
23
0
2
Order By: Relevance
“…Efforts to combine AC and ML approaches have been highlighted in several recent works, which include [47,[55][56][57][58]. Other than our earlier work in [49,50], new algorithms that combine AC and RL in continuous-time systems can be found in [59][60][61].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Efforts to combine AC and ML approaches have been highlighted in several recent works, which include [47,[55][56][57][58]. Other than our earlier work in [49,50], new algorithms that combine AC and RL in continuous-time systems can be found in [59][60][61].…”
Section: Introductionmentioning
confidence: 99%
“…References [60,61] study the linear-quadratic-regulator problem and its adaptive control variants from an optimization and machine learning perspective. In [57] a reinforcement learning approach is used to determine an adaptive controller for an unknown system, while in [58] principles from adaptive control and Lyapunov analysis are used to adjust and train a deep neural network. For the second class of algorithms in discrete-time, other than our earlier work in [50][51][52], to our knowledge, similar combinations of AC and ML for accelerated performance and convergence have not been reported to-date.…”
Section: Introductionmentioning
confidence: 99%
“…El único punto que queda por clarificar es como estimar los parámetros,θ, de la regresión (9). En la estructura de (9) es común implementar un algoritmo de mínimos cuadrados recursivos [6][7].…”
Section: Estimador De Parámetros Dispersounclassified
“…Finalmente, a diferencia de muchas técnicas de aprendizaje [9], el algoritmo propuesto incorpora una métrica que le permite cuantificar la precisión de los parámetros estimados. Mediante esta métrica se podrá discernir entre una fase de aprendizaje, en la que el controlador está aprendiendo el sistema, y una fase de ejecución, en la que el controlador sigue la referencia deseada.…”
Section: Introductionunclassified
“…Inspired by [6], [7], and [10], we develop an adaptive eventtriggered distributed state observer that utilizes DNNs as a means to improve state reconstruction for an uncertain nonlinear system. Using a nonsmooth Lyapunov stability analysis, we prove that our observer is capable of UUB state reconstruction while being robust to a bounded exogenous disturbance.…”
Section: Introductionmentioning
confidence: 99%