We propose a deep reinforcement learning (DRL) methodology for the tracking, obstacle avoidance, and formation control of nonholonomic robots. By separating vision-based control into a perception module and a controller module, we can train a DRL agent without sophisticated physics or 3D modeling. In addition, the modular framework averts daunting retrains of an image-to-action end-to-end neural network, and provides flexibility in transferring the controller to different robots. First, we train a convolutional neural network (CNN) to accurately localize in an indoor setting with dynamic foreground/background. Then, we design a new DRL algorithm named Momentum Policy Gradient (MPG) for continuous control tasks and prove its convergence. We also show that MPG is robust at tracking varying leader movements and can naturally be extended to problems of formation control. Leveraging reward shaping, features such as collision and obstacle avoidance can be easily integrated into a DRL controller. † Equal contribution.
Distributed state estimation is examined for a sensor network tasked with reconstructing a system's state through the use of a distributed and event-triggered observer. Each agent in the sensor network employs a deep neural network (DNN) to approximate the uncertain nonlinear dynamics of the system, which is trained using a multiple timescale approach. Specifically, the outer weights of each DNN are updated online using a Lyapunov-based gradient descent update law, while the inner weights and biases are trained offline using a supervised learning method and collected input-output data. The observer utilizes event-triggered communication to promote the efficient use of network resources. A nonsmooth Lyapunov analysis shows the distributed event-triggered observer has a uniformly ultimately bounded state reconstruction error. A simulation study is provided to validate the result and demonstrate the performance improvements afforded by the DNNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.