Wastewater malodour is the proverbial ‘elephant in the room’ notwithstanding its severe implications on sanitation, health, and hygiene. The predominant malodorous compounds associated with wastewater treatment plants and toilets are volatile organic compounds, such as hydrogen sulphide, ammonia, methanethiol, and organic acids. Among them, methanethiol warrants more attention owing to its relatively low olfactory threshold and associated cytotoxicity. This requires an efficient odour-abatement method since conventional techniques are either cost-prohibitive or leave recalcitrant byproducts. Bacteriophage-based methodology holds promise, and the described work explores the potential. In this study, a non-lysogenous Pseudomonas putida strain is used as a model organism that produces methanethiol in the presence of methionine. Two double-stranded DNA phages of genome sizes > 10 Kb were isolated from sewage. ɸPh_PP01 and ɸPh_PP02 were stable at suboptimal pH, temperature, and at 10% chloroform. Moreover, they showed adsorption efficiencies of 53% and 89% in 12 min and burst sizes of 507 ± 187 and 105 ± 7 virions per cell, respectively. In augmented synthetic wastewater, ɸPh_PP01 and ɸPh_PP02 reduced methanethiol production by 52% and 47%, respectively, with the concomitant reduction in P. putida by 3 logs in 6 h. On extension of the study in P. putida spiked-sewage sample, maximum reduction in methanethiol production was achieved in 3 h, with 49% and 48% for ɸPh_PP01 and ɸPh_PP02, respectively. But at 6 h, efficiency reduced to 36% with both the phages. The study clearly demonstrates the potential of phages as biocontrol agents in the reduction of malodour in wastewater.