Metastatic cancer involving spread to the peritoneal cavity is referred to as peritoneal carcinomatosis and has a very poor prognosis. Activating the anti-tumor immune response in the characteristically immune-suppressive peritoneal environment presents a potential strategy to treat this disease. In this study, we show that a toll-like receptor (TLR) and C-type lectin receptor (CLR) agonist pairing of monophosphoryl lipid A (MPL) and trehalose-6,6'-dicorynomycolate (TDCM) effectively inhibits tumor growth and ascites development in a mouse model of aggressive mammary cancer-induced peritoneal carcinomatosis. MPL/TDCM treatment similarly inhibited peritoneal EL4 tumor growth and ascites development. These effects were not observed in mice lacking B cells or mice lacking CD19, which are deficient in B-1a cells, an innate-like B cell population enriched in the peritoneal cavity. Remarkably, adoptive transfer of B-1a cells, but not splenic B cells from WT mice restored MPL/TDCM-induced protection in mice with B cell defects. Treatment induced B-1 cells to rapidly produce high levels of natural IgM reactive against tumor-associated carbohydrate antigens. Consistent with this, we found significant deposition of IgM and C3 on peritoneal tumor cells as early as 5 days post-treatment. Mice unable to secrete IgM or complement component C4 were not protected by MPL/TDCM treatment, indicating tumor killing was mediated by activation of the classical complement pathway. Collectively, our findings reveal an unsuspected role for B-1 cell-produced natural IgM in providing protection against tumor growth in the peritoneal cavity, thereby highlighting potential opportunities to develop novel therapeutic strategies for the prevention and treatment of peritoneal metastases.