In plants, sugars are required to sustain growth and regulate gene expression. A large set of genes are either up-or down-regulated by sugars; however, whether there is a common mechanism and signal transduction pathway for differential and coordinated sugar regulation remain unclear. In the present study, the rice (Oryza sativa cv Tainan 5) cell culture was used as a model system to address this question. Sucrose and glucose both played dual functions in gene regulation as exemplified by the up-regulation of growth-related genes and down-regulation of stress-related genes. Sugar coordinately but differentially activated or repressed gene expression, and nuclear run-on transcription and mRNA half-life analyses revealed regulation of both the transcription rate and mRNA stability. Although coordinately regulated by sugars, these growth-and stress-related genes were up-regulated or down-regulated through hexokinase-dependent and/or hexokinaseindependent pathways. We also found that the sugar signal transduction pathway may overlap the glycolytic pathway for gene repression. ␣-Amylase and the stress-related genes identified in this study were coordinately expressed under sugar starvation, suggesting a convergence of the nutritional and environmental stress signal transduction pathways. Together, our studies provide a new insight into the complex signal transduction network and mechanisms of sugar regulation of growth and stress-related genes in plants.