SummaryIn plants, sugars act as signalling molecules that control many aspects of metabolism and development. Arabidopsis plants homozygous for the recessive sucrose uncoupled-6 (sun6) mutation show a reduced sensitivity to sugars for processes such as photosynthesis, gene expression and germination. The sun6 mutant is insensitive to sugars that are substrates for hexokinase, suggesting that SUN6 might play a role in hexokinase-dependent sugar responses. The SUN6 gene was cloned by transposon tagging and analysis showed it to be identical to the previously described ABSCISIC ACID INSENSITIVE-4 (ABI4) gene. Our analysis suggests the involvement of abscisic acid and components of the abscisic acid signal transduction cascade in a hexokinase-dependent sugar response pathway. During the plant life cycle, SUN6/ABI4 may be involved in controlling metabolite availability in an abscisic acid-and sugardependent way.
Low concentrations of the glucose (Glc) analog mannose (Man) inhibit germination of Arabidopsis seeds. Man is phosphorylated by hexokinase (HXK), but the absence of germination was not due to ATP or phosphate depletion. The addition of metabolizable sugars reversed the Man-mediated inhibition of germination. Carbohydrate-mediated regulation of gene expression involving a HXK-mediated pathway is known to be activated by Glc, Man, and other monosaccharides. Therefore, we investigated whether Man blocks germination through this system. By testing other Glc analogs, we found that 2-deoxyglucose, which, like Man, is phosphorylated by HXK, also blocked germination; no inhibition was observed with 6-deoxyglucose or 3-O-methylglucose, which are not substrates for HXK. Since these latter two sugars are taken up at a rate similar to that of Man, uptake is unlikely to be involved in the inhibition of germination. Furthermore, we show that mannoheptulose, a specific HXK inhibitor, restores germination of seeds grown in the presence of Man. We conclude that HXK is involved in the Man-mediated repression of germination of Arabidopsis seeds, possibly via energy depletion.Among the many regulatory systems and signals in plants, carbon-metabolite-mediated gene regulation has been receiving growing attention in the past few years (for reviews, see
Sugar-mediated regulation of gene expression is a mechanism controlling the expression of many different plant genes. In this review, a compilation of the genes encoding photosynthetic proteins, subject to this mode of regulation, is presented. Several groups have devised different screening strategies to obtain Arabidopsis mutants in sugar sensing and signalling. An overview of these strategies has been included. Sugar-mediated regulation of gene expression is thought to require the hexokinase (HXK) protein. It has previously been shown that one such sugar, mannose, is capable of blocking germination in Arabidopsis. This inhibition is also mediated by HXK and occurs in the low millimolar concentration range. Here, the use of germination on mannose as an effective screening strategy for putative sugar sensing and signalling mutants is reported. T-DNA- and EMS-mutagenized collections were used to isolate 31 mannose-insensitive germination (mig) mutants. With the use of these mutants, a comparison between this screen and other existing sugar-sensing screens is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.