SummaryIn plants, sugars act as signalling molecules that control many aspects of metabolism and development. Arabidopsis plants homozygous for the recessive sucrose uncoupled-6 (sun6) mutation show a reduced sensitivity to sugars for processes such as photosynthesis, gene expression and germination. The sun6 mutant is insensitive to sugars that are substrates for hexokinase, suggesting that SUN6 might play a role in hexokinase-dependent sugar responses. The SUN6 gene was cloned by transposon tagging and analysis showed it to be identical to the previously described ABSCISIC ACID INSENSITIVE-4 (ABI4) gene. Our analysis suggests the involvement of abscisic acid and components of the abscisic acid signal transduction cascade in a hexokinase-dependent sugar response pathway. During the plant life cycle, SUN6/ABI4 may be involved in controlling metabolite availability in an abscisic acid-and sugardependent way.
Sugar-mediated regulation of gene expression is a mechanism controlling the expression of many different plant genes. In this review, a compilation of the genes encoding photosynthetic proteins, subject to this mode of regulation, is presented. Several groups have devised different screening strategies to obtain Arabidopsis mutants in sugar sensing and signalling. An overview of these strategies has been included. Sugar-mediated regulation of gene expression is thought to require the hexokinase (HXK) protein. It has previously been shown that one such sugar, mannose, is capable of blocking germination in Arabidopsis. This inhibition is also mediated by HXK and occurs in the low millimolar concentration range. Here, the use of germination on mannose as an effective screening strategy for putative sugar sensing and signalling mutants is reported. T-DNA- and EMS-mutagenized collections were used to isolate 31 mannose-insensitive germination (mig) mutants. With the use of these mutants, a comparison between this screen and other existing sugar-sensing screens is presented.
The expression of the Arabidopsis plastocyanin (PC) gene is developmentally controlled and regulated by light. During seedling development, PC gene expression is transiently induced, and this induction can be repressed by sucrose. In transgenic seedlings carrying a PC promoter-luciferase fusion gene, the luciferase-induced in vivo luminescence was similarly repressed by sucrose. From a mutagenized population of such transgenic seedlings, we selected for mutant seedlings that displayed a high luminescence leve1 when grown on a medium with 3% sucrose. This screening of mutants resulted in the isolation of several sucrose-uncoupled (sun) mutants showing reduced repression of luminescence by sucrose. Analysis of the sun mutants revealed that the accumulation of PC and chlorophyll a/b binding protein (CAB) mRNA was also sucrose uncoupled, although the extent of uncoupling varied. The effect of sucrose on far-red light high-irradiance responses was studied in wild-type, sunl, sun6, and sun7 seedlings. In wild-type seedlings, sucrose repressed the far-red light-induced cotyledon opening and inhibition of hypocotyl elongation. sun7 seedlings showed reduced repression of these responses. Sucrose also repressed the far-red light-induced block of greening in wild-type seedlings, and both sun6 and sun7 were affected in this response. The results provide evidence for a close interaction between sucrose and light signaling pathways. Moreover, the sun6 and sun7 mutants genetically identify separate branches of phytochrome A-dependent signal transduction pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.