2016
DOI: 10.11606/rdg.v31i0.103040
|View full text |Cite
|
Sign up to set email alerts
|

Mapeamento Do Cultivo De Café No Sul De Minas Gerais Utilizando Imagens Landsat-5 Tm E Variáveis Topográficas

Abstract: Resumo: Esta pesquisa tem como objetivo mapear os cultivos de café na região de Muzambinho, Cabo Verde e Monte Belo, Sul de Minas Gerais, utilizando imagens Landsat-5 Thematic Mapper e Modelos Digitais do Terreno. A área de estudo localiza-se em uma tradicional região produtora de café, onde o cultivo é praticado, na maioria das vezes, em áreas de relevo fortemente ondulado. Para a realização da pesquisa, incialmente aplicou-se um modelo de iluminação para a correção do efeito topográfico, com o objetivo de re… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2019
2019
2020
2020

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(3 citation statements)
references
References 12 publications
0
2
0
1
Order By: Relevance
“…Further studies should be completed using this methodology for different areas. Different variables may be incorporated into the classification process, as for instance, physical data, like topography (Prado et al, 2016), hypsometry, and others.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…Further studies should be completed using this methodology for different areas. Different variables may be incorporated into the classification process, as for instance, physical data, like topography (Prado et al, 2016), hypsometry, and others.…”
Section: Resultsmentioning
confidence: 99%
“…The mapping of agricultural areas has become essential because these areas are crucial to the economic development of many regions. Several techniques for mapping coffee cultivation areas were previously used by some authors (Cordero-Sancho & Sader, 2007;Martínez-Verduzco et al, 2012;Santos et al, 2012;Sarmiento et al, 2014), including the visual classification (Machado et al, 2010), the supervised pixel-based classification approach (Cordero-Sancho & Sader, 2007;Martínez-Verduzco et al, 2012), the object-based approach (Santos et al, 2012;Sarmiento et al, 2014;Souza et al, 2016), the machine-learning algorithms (Santos et al, 2012;Sarmiento et al, 2014;Souza et al, 2016), the use of different variables (Santos et al, 2012;Souza et al, 2016), and physical data (Prado et al, 2016). However, most of these works did not achieve satisfactory results for accuracy, once coffee cultivations are commonly misinterpreted with other vegetation, such as pasture and native vegetation, when automatic classification techniques are used.…”
Section: Introductionmentioning
confidence: 99%
“…Esse método assume que todas as covariâncias de classe são iguais (RIBEIRO; SILVEIRA; NUCCI, 2013). O KNN é calculado considerando comportamento espectral dos pixels vizinhos na tomada de decisão (PRADO; HAYAKAWA; KAWAKUBO, 2016). Esse método mantem os valores de níveis de cinza e de brilho dos pixels da imagem original (SAKUNO et al, 2017).…”
Section: Pesquisadoresunclassified