Axonal degeneration is a central pathological feature of multiple sclerosis and is closely associated with irreversible clinical disability. Current noninvasive methods to detect axonal damage in vivo are limited in their specificity, clinical applicability and lack of proper validation. We aimed to validate an MRI framework based on multicompartment modeling of the diffusion signal (AxCaliber) in rats in the presence of axonal pathology, achieved through injection of a neurotoxin damaging the neuronal terminal of axons. We then applied the same MRI protocol to map axonal integrity in the whole brain of multiple sclerosis relapsing-remitting patients and age-matched healthy controls.AxCaliber is sensitive to microstructural axonal damage in rats, as demonstrated by a significant increase in the mean axonal caliber along the target tract, which correlated with the neurotoxin neurofilament staining. In humans, we uncovered a diffuse increase in mean axonal caliber in demyelinating lesions and, importantly, in most areas of the normal-appearing white matter. Our results demonstrate that axonal diameter mapping is a sensitive and specific imaging biomarker able to link noninvasive imaging contrasts with the underlying biological substrate, supporting the key role of generalized axonal damage in multiple sclerosis.