Lignocellulosic materials, made up of cellulose, hemicellulose, and lignin, constitute some of the most prevalent types of biopolymers in marine ecosystems. The degree to which marine microorganisms participate in the breakdown of lignin and their impact on the cycling of carbon in the oceans is not well understood. Strain LCG002, a novel Marivivens species isolated from Lu Chao Harbor’s intertidal seawater, is distinguished by its ability to metabolize lignin and various aromatic compounds, including benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate and phenylacetate. It also demonstrates a broad range of carbon source utilization, including carbohydrates, amino acids and carboxylates. Furthermore, it can oxidize inorganic gases, such as hydrogen and carbon monoxide, providing alternative energy sources in diverse marine environments. Its diversity of nitrogen metabolism is supported by nitrate/nitrite, urea, ammonium, putrescine transporters, as well as assimilatory nitrate reductase. For sulfur assimilation, it employs various pathways to utilize organic and inorganic substrates, including the SOX system and DSMP utilization. Overall, LCG002’s metabolic versatility and genetic profile contribute to its ecological significance in marine environments, particularly in the degradation of lignocellulosic material and aromatic monomers.